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SUMMARY 
Solution methods are presented for the large systems of linear equations resulting from the implicit, coupled 
solution of the Navier-Stokes equations in three dimensions. Two classes of methods for such solution 
have been studied: direct and iterative methods. 

For direct methods, sparse matrix algorithms have been investigated and a Gauss elimination, optimized 
for vector-parallel processing, has been developed. Sparse matrix results indicate that reordering algorithms 
deteriorate for rectangular, i.e. M x M x N, grids in three dimensions as N gets larger than M. A new local 
nested dissection reordering scheme that does not suffer from these difficulties, at least in two dimensions, 
is presented. The vector-parallel Gauss elimination is very efficient for processing on today’s super- 
computers, achieving execution rates exceeding 2.3 Gflops the Cray YMP-8 and 9.2 Gflops on the NEC 
on SX3. 

For iterative methods, two approaches are developed. First, conjugate-gradient-like methods are studied 
and good results are achieved with a preconditioned conjugate gradient squared algorithm. Convergence 
of such a method being sensitive to the preconditioning, a hybrid viscosity method is adopted whereby 
the preconditioner has an artificial viscosity that is gradually lowered, but frozen at a level higher than 
the dissipation introduced in the physical equations. The second approach is a domain decomposition one 
in which overlapping domain and side-by-side methods are tested. For the latter, a Lagrange multiplier 
technique achieves reasonable rates of convergence. 

1. INTRODUCTION 

The simulation of complex aerodynamic fields by means of inviscid and viscous flow equations 
is rapidly becoming the preferred analysis and design tool in the aerospace industry. There is 
no shortage of methods for discretizing the Euler and Navier-Stokes equations, with these 
methods differing in their discretization of the time or pseudo-time term, space terms, linear- 
ization and algebraic equation solution met hod. 

The predominant space discretization methods in industrial practice are the finite difference 
method (FDM) and finite volume method (FVM), with the finite element method (FEM) a distant 
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third in North America. The FEM is often perceived as taxing on computer memory. The 
situation is more evenly balanced in Europe and elsewhere, where the FEM is recognized as 
providing flexibility in approximating complex geometries and in the ease of application of 
boundary conditions. In practice, however, to distinguish between FVM and FEM takes a 
well-trained eye, since the boundaries between the two are getting fuzzier. During space 
discretization, methods also differ in applying the dissipation necessary to stabilize the numerical 
solution. Two approaches are possible: centred schemes, with dissipation introduced through 
an explicit artificial viscosity, or upwind schemes applied to the convective terms. 

For time discretization, explicit and implicit approximations can be used. Explicit schemes 
trade speed of convergence for simplicity by not requiring matrix solution. They are easily 
vectorizable and parallelizable. To speed up convergence, various acceleration techniques are 
used such as local time stepping, residual averaging and multigrid methods. Large-scale problems 
are therefore more easily amenable to solution on today's computers, with a compromise between 
large solution times and manageable memory resources. Implicit schemes, on the other hand, 
allow much larger time steps at the cost of solving some matrices at each step. These range 
from fully-coupled schemes, to AD1 schemes, all the way to schemes that only require the solution 
of scalar tridiagonal matrices. 

It must be appreciated, however, that the hierarchy of simplifications in the solution of the 
coupled system of equations must be at the cost of additional iterations to obtain the same 
overall convergence of the non-linear system. While it can be argued that coupled methods of 
solution are currently impractical because of their memory requirements, it can be pointed out 
that their convergence is not only much faster but also simpler, since the usual bells and whistles 
of uncoupled methods are not needed. The slow convergence of explicit methods may also 
sometimes lead to the temptation of accepting partially converged results under the argument 
of sufficient engineering accuracy. This is not without danger, as was vividly demonstrated by 
Pulliam'. After experiencing great difficulties with most well-known schemes for the Euler 
equations, he challenged code developers to predict zero lift for subsonic flow over circular 
cylinders and ellipses when the mesh is skewed to the freestream direction. In this problem the 
convergence behaviour of the lift coefficient C,  is such that it starts positive, crosses zero, becomes 
negative and settles asymptotically to its final artificial-viscosity-dependent value, which may 
not necessarily be zero. For the ellipse, none of the codes tested by Pulliam yielded a C ,  less 
than 1-545, while for the cylinder the minimum was 13.66. Invariably the response was to propose 
results from codes stopped after a larger number of iterations at about the time that zero lift 
was being obtained, using the argument that acceptable engineering accuracy is reached by then. 
When iteration is resumed in such codes, however, none was able to asymptotically predict zero 
lift. A year later a second-order Godunov scheme2 only achieved a reduction of one order of 
magnitude in lift. 

We have presented a simple but effective method for the solution of the fully-coupled system 
of inviscid ( E ~ l e r ) ~  and viscous (Na~ier-Stokes)~ equations. The scheme is a weak-Galerkin 
formulation with simple Laplacian dissipation terms explicitly added to each of the Euler 
equations, but only to be the continuity equation for Navier-Stokes formulations. The linear- 
ization of the system is carried out via a Newton method, followed by a direct solution of the 
coupled system of linear equations, at each iteration. This method has proven efficient and 
accurate for both inviscid and viscous cases, yielding C,-values of O( for the test cases 
proposed by Pulliam. 

The coupled system of equations resulting from our two-dimensional formulation will include 
the pressure (or density) and two velocity components and is amenable to a direct solver on a 
large class of computers and workstations. For example, a flow having three variables (u, u, p) 
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per cell vertex, discretized on an N x M structured grid, would require the solution of 3NM 
equations with a bandwidth of 3N.  The number of operations for such a direct solution is 
estimated as 27MN3.  For the equivalent three-dimensional problem on an L x N x M grid 
the number of equations increased to 4 L M N  and the bandwidth to 4NL.  The number of 
operations increases to 64MN3L3,  i.e. 2.37L3 times the number for the two-dimensional 
solution. 

Preaching the use of coupled methods of solution is therefore not that clear-cut and the present 
paper is only a step in a sustained effort to address the practical solution of such large 
nonsymmetric systems of linear equations for three-dimensional flow situations. This includes 
the development of solvers and techniques for direct or iterative solutions on vector and parallel 
computers. 

2. THE PROBLEM 

The steady, three-dimensional compressible, variable viscosity, Navier-Stokes equations can be 
written as 

continuity 

momentum 

1 
P(V.V)V + V(V.PV) = -VP + Re [-$V(pV*V) + v x p(V x V) + 2(V*pV)V], (2) 

energy 

equation of state 

p / p  = R T .  (4) 

It should be remarked that a pressure dissipation term &V2p has been added to the continuity 
equation (2) for regularization. Such a Laplacian term with a small coefficient E prevents 
odd-even decoupling or checkerboarding from occurring, without the need for unequal-order 
interpolation of velocity and pressure in the FEM or staggered grids in the FDM.3*4 This 
regularization term constitutes, however, a small error in mass that is reflected as a first-order 
accuracy of the scheme. Second-order accuracy, when needed, can be achieved through the use 
of a fourth-order operator and has been detailed in Reference 5. 

In addition, a simplified energy equation, namely the constancy of total enthalpy, has been 
used. This is a good approximation for the adiabatic viscous compressible flow of a perfect gas. 
While the full energy equation can be, and has been, used in our work, our main purpose here 
is to discuss solution schemes for the large systems of couple equations for three-dimensional 
flows, presently restricted because of memory limitation to the continuity and momentum 
system. 

After FEM discretization and Newton linearization, the following representative delta form 
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of the equations can be obtained for three-dimensional flows in terms of the cell vertex unknowns 
of pressure and velocity components at the eight vertices of a trilinear element: 

which can be written in matrix form as 

This form could be taken as representative of the fully-coupled solution of an incompressible 
flow or the fully-coupled solution of a compressible flow with the density lagged. Although the 
FEM has been selected as the discretization scheme, the remainder of the paper applies equally 
to the coupled equations resulting from the FDM or FVM, the only difference being in the way 
the equations are assembled. 

For a fully-coupled solution, quadratic convergence has been demonstrated for inviscid 
transonic two-dimensional flows,3 with convergence to machine accuracy in about six iterations. 
For three-dimensional flows, storage limitations dictate that the density be lagged and only 
linear convergence can be achieved, with machine accuracy reached in about 30 iterations for 
compressible viscous flows.4 

The remainder of the paper will concentrate on presenting the schemes developed or tested 
for the solution of matrices resulting from this coupled approach. These will include the direct 
methods (a) sparse matrix technology and (b) parallel-vector Gauss elimination and the iterative 
methods (a) preconditioned conjugate-gradient-like methods and (b) domain decomposition 
algorithms. 

3. DIRECT SOLVERS 

3.1. Sparse matrix technology 

Sparse matrix technology has been used for a wide variety of numerical problems requiring 
the solution of large sparse sets of equations.697 More recently it has attracted interest for the 
solution of CFD problems by direct methods. Some degree of success has been reported, for 
example in Reference 8, where large two-dimensional problems have been tackled by such 
methods. The method starts with a reordering algorithm that scans the matrix topology and 
restructures it to minimize the storage. The reordered matrix is then decomposed by various 
methods, often taking advantage of the architecture of modern computers. 
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Reordering schemes in SPARSPAK. To identify the limits of applicability of this approach to 
large three-dimensional CFD problems, SPARSPAK, a commercially available sparse matrix 
package from the University of Waterloo and co-authored by one of the present authors, was 
used. Three reordering schemes, namely reverse Cuthill-McKee (RCM), multiple minimum 
degree (MMD) and nested dissection (ND), included in SPARSPAK, were tested and compared 
with natural ordering. 

Test cases were run on a cubic grid of size N x N x N ,  with N varying from 5 to 30, and the 
results obtained are shown in Figures 1 and 2. 

The MMD and N D  reordering schemes are very efficient in reducing the storage requirements 
and factorization operations of the natural ordering for large values of N .  The RCM algorithm 
invariably leads to reorderings and operations count, at least for cubic grids, that are worse 
than natural ordering. 

The performance of the reordering schemes changes dramatically, however, when the grid 
density becomes asymmetric, i.e. increases in one direction, say M x M x N with N > M .  The 
efficiency of the MMD and ND algorithms suffers drastically. Figures 3 and 4 show that the 
RCM algorithm recovers somewhat relative to other reordering methods, but never improves 
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Figure 1. Storage requirements for various reordering schemes, cubic grids 
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Figure 2. Factorization operations counts for various reordering schemes, cubic grids 
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Figure 3. Storage requirements for various reordering schemes, rectangular grids 
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Figure 4. Factorization count for various reordering schemes, rectangular grids 

over the natural ordering. The MMD algorithm, on the other hand, deteriorates rapidly with 
grid density asymmetry, while the N D  algorithm shows a consistent improvement in storage 
requirements but an unfavorable factorization count compared with natural ordering. 

An improved method for asymmetric grids: local nested dissection. The above observations 
provide the impetus for a new ordering scheme which combines the advantages of the natural 
and ND orderings for asymmetric grid problems.’ Consider an N x M grid where N > M. The 
new scheme would order the two rectangular subgrids, consisting of the first M / 2  rows and 
the last M / 2  rows of the grid, using the standard ND ordering. The remaining N - M rows 
of the grid would be numbered by considering a partitioning factor p, with I < p < M, and the 
(N - M) x M rectangular grid divided into smaller square subgrids of size approximately M / p  
by a set of horizontal and vertical grid lines. There would be p partitions horizontally and 
p ( N  - M ) / M  vertically. This gives p2(N - M ) / M  square subgrids of size M / p .  Each square 
subgrid is ordered by the standard ND ordering. The remaining nodes associated with the 
partitioning grid lines are then numbered using a scheme similar to the natural ordering, the 
only difference being that a set of nodes associated with the boundary of a square subgrid is 
numbered consecutively. 
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1 7 4 19 10 16 13 1 7 4 19 10 16 13 
3 8 6 20 12 17 15 3 8 6 20 12 17 15 

23 30 26 42 32 39 35 
24 29 27 41 33 38 36 
23 30 26 42 32 39 35 

With partitioning factorp = 2 With partitioning factorp = 4 
Figure 5. Located nested dissection for a 15 x 7 grid with partitioning factors p = 2 and 4 

To illustrate the numbering scheme, Figure 5 shows the orderings of a 7 x 15 grid with 
partioning factors p = 2 and 4. 

Since ND ordering is applied locally to a number of smaller subgrids, this ordering can be 
referred to as a local nested dissection (LND) ordering. It should be remarked that if the grid 
is square, this ordering becomes the standard ND. Moreover, the LND ordering with a partition 
value p = 1 corresponds to a hybrid nested dissection strategy introduced by Rose and 
Whitten." At the other extreme, i.e. for a large partition factor p close to M, LND is simply 
the natural ordering: LND can hence be viewed as a generalization of the hybrid nested 
dissection strategy of Reference 10. 

Choice of partitioning value. In Figure 6 the number of factorization operations is shown 
versus different values of p for a 500 x 60 grid problem. The minimum operations count of 
21 x lo6 operations is attained for a partition value of about p = 5. For comparison, the 
standard ND ordering requires 29.1 x lo6 operations to factor, while natural ordering requires 
58.4 x lo6 operations. 

The observation that the operations count is a minimum around p = 5 can be established 
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Figure 6. Factorization operations count for different partitioning factors p for a 500 x 60 grid 
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formally for general rectangular grids. The following bound on the arithmetic operations can 
be obtained by a simple count? 

( N - M ) M ~  ( p + - + - - -  ::: $) +$ M 3 .  

The asymptotic bound is minimized at p = 4.67. This can be shown by differentiating the 
coefficient expression for the term N M 2  with respect to p and equating to zero. One obtains 

12p3 - 369p+ 500 = 0. (7) 
The roots of this equation are 1.46, 4.67 and -6.13 respectively and p = 4.67 yields the 
minimum. 

The optimal value of p between 4 and 5 has an intuitive explanation. For square subgrids 
nested dissection is obviously efficient. For an S x S subgrid the number of nodes on the 
boundary is roughly 4s. When 4s  reaches M, it pays to switch to a scheme similar to the natural 
ordering. 

Table I gives statistics for various N x M rectangular grids with a number of unknowns 
NM = 30,000. These show that the LND ordering can substantially reduce arithmetic operations 
for elongated grids. 

3.2. Gauss elimination on vector-parallel supercompuiers 

In the last few years pioneering work has been initiated by Storaasli et al.," who, using the 
computing power of a Cray YMP with eight processors, were able to achieve impressive 
execution rates for the direct solution of a symmetric set of 54,870 equations for the structural 
analysis of the Space Shuttle Solid Rocket Booster. In the present work similar ideas are used 
but with the following important distinctions: 

1. The CFD system matrix is non-symmetric, i.e. the method is applied to a general, variable 

2. A larger set of equations with a larger bandwidth is solved. 
3. No special language other than Fortran is used. 
4. The parallel-vector strategy is highly optimized. 

In the following the underlying ideas of the vector-parallel Gauss elimination are discussed. 

bandwidth matrix. 

The vector-parallel Gauss elimination. The matrix is stored in a continuous vector containing 
the entries row-by-row, with a variable bandwidth, i.e. in a skyline mode. Two indices need to 

Table I. Factorization statistics, in millions, for N x M rectangular grids 

Natural ordering Standard ND Local ND 

N x M grid Non-zeros Op. count Non-zeros Op. count Non-zeros Op. count 
~ ~~~ ~~ ~~ 

2000 x 15 0.478 4.523 0.533 7.221 0.430 4.161 
lo00 x 30 0.928 15.758 0.7 16 15.35 1 0.621 9.794 
500 x 60 1.826 58.376 0.887 29.098 0.819 2 1,022 
250 x 120 2.615 223.842 1.008 44.679 0.990 39.781 
200 x 150 4.507 346474 1.009 45.148 1.022 45.493 
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be defined: the first to indicate the start of each row and the second to point out the farthest 
row above it affecting its elimination. 

The classical Gauss elimination procedure starts the elimination from the top of the matrix. 
The elimination row is first divided by its diagonal and has multiples of it subtracted from all 
the following rows to eliminate the column corresponding to its diagonal. In the approach of 
Storaasli et al." the procedure is inverted, with a row selected to be operated on and all previous 
rows affecting it being used to eliminate the corresponding columns of that row. This is obviously 
more amenable to parallel computing, since at the row being eliminated synchronization is 
needed only with a number of preceding rows equal to the number of processors. This is much 
less than the continuous synchronization that would be required by the classical Gauss 
elimination. In addition, the fact that many rows are available to be used for elimination of the 
selected row allows loop unrolling, which will be described later. 

The decomposition proceeds by assigning an equation to a processor. The elimination is 
performed in parallel on the processors, using all previously completed factorized rows. As soon 
as a processor has completed the factorization of a row, it operates on the next unfactorized 
one. The vectorization is carried our on the row operations using loop unrolling of various 
levels. The vector length is controlled by the bandwidth and the stride is unity, since all vector 
components are contiguous. 

Dynamic assignment of equations to processors. It should be recognized that each processor 
must be initiated, taking some finite time to come on stream. Speed is therefore gained by 
dynamically assigning equations to be operated on to the available processors. This is illustrated 
in Figure 7 for a three-processor case. 

Let us assume that equation 1 has been assigned to the first processor; it would be divided 
by its diagonal in preparation for the elimination of subsequent rows. In the figure it is shown 
that rows 2 and 3 are successively assigned to processor 1 as long as processors 2 and 3 are not 
fully active yet. As soon as processor 2 is fully operational, the next equation to be eliminated 
is assigned to it, in this case equation 4; processor 1 will then host equation 5. When processor 
3 is activated, it is shown that it hosts equation 8, and so on. In addition, the figure illustrates 

Processor 
X I X X X I X I  1 starts, divides 1 

Figure 7. Dynamic assignment of equations to processors 
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that in the second access of processor 3 no elimination is required, since no rows affect the 
current one, and processor 3 immediately operates on the next available equation. 

Dynamic loop unrolling. Loop unrolling is a technique to minimize the fetching and storing 
of data to and from memory in a compute-intensive application. It consists of explicitly writing 
out portions of a DO-loop to minimize the number of times data are stored back to memory. 
As an example of a level-3 loop unrolling, consider the following: 

DO 100 I = 1, M 
DO 100 J = 1, N 
A(J) = A(J) + B(I)*C(J,I) 

100 CONTINUE 

A level-3 unrolling of the above DO-loop can be written as 

DO 100 I = 1, M, 3 
DO 100 J = 1, N 
A(J) = A(J) + B(I)*C(J,I) + B(I + l)*C(J,I + 1) + B(I + 2)*C(J,I + 2) 

100 CONTINUE 

Since memory access is costly, substantial savings are obtained by the unrolled form, since data 
for A(J) remain in the vector register without having to be repeatedly stored back. On the current 
Cray computers the optimal level of unrolling is found to be 7 for this particular type of 
application. 

Static and dynamic loop unrolling are illustrated in Figures 8(a) and 8(b) for a level-3 loop 
unrolling. Storaasli et al." use level-9 loop unrolling and divide the matrix into blocks of nine 
rows each. It can be seen for the level-3 example of Figure 8(a) that when a particular row is 
being eliminated (shown by an arrow), normally two special blocks each having less than three 
rows will occur. This means that special loop-unrolling statements must be written for both 
blocks, with a lower level of unrolling and hence less efficiency. 

By dynamically sizing blocks to start at the first row affecting the elimination, it is clear from 
Figure 8(b) that only one special short block can occur. Over the large number of operations 
involved in the matrix decomposition, this can translate into a sizable saving. 

Dynamic elimination. In a static elimination procedure a block is only processed if all 
information within that block is ready, i.e. the whole block has already been operated on, as 
indicated for L - 1 blocks of Figure 9. This implies a wait state where a processor is idle if the 
entire block operations are not yet complete, as shown in the same figure for block L. 

On the other hand, in a dynamic elimination, instead of spending CPU cycles in an idle state, 
the processor, in this case processor 1, is allowed to start operating on the completed portion 
of the equation block L even if the whole block is not yet complete. While this partial block 
operation affects the level of loop unrolling, the penalty is less than allowing a processor to 
remain idle. At the termination of a partial block operation it is not unusual for the previously 
uncompleted rows to have been operated on, and the row being eliminated can then be 
completely processed. 

Gauss elimination for Navier-Stokes. The Navier-Stokes solutions have been obtained on an 
NEC SX-3/44 with four processors and 128 Mwords of memory and are compared with the 
1990 results obtained on a Cray Research YMP-8 computer with eight processors and similar 
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--....---..............- I 
I 

Figure 8(a). Static block unrolling 

Figure 8(b). Dynamic block unrolling 

memory. The equation sets solved are from the discretization of the Navier-Stokes equations 
for a three-dimensional flow in a gas turbine pipe d i f f~ser , '~  shown in Figure 10. Access to the 
Cray permitted its use in a dedicated model, while the operation of the NEC machine did not 
permit us to use it as single users. 

Although the physical non-linear problem of this paper is the solution of the Navier-Stokes 
equations, the discussion in the rest of this section pertains to the application of the Gauss 
elimination algorithm to the solution of the matrix at a single Newton step. Test case size 
information is included in Table 11. The number of equations in the test cases ranges from about 
6800 to over 100,000 and the bandwidth from 476 to 2877. 

Table I11 presents the results obtained on the eight-processor YMP. Results indicate that the 
speed-up from one to two processors is nearly 99% efficient. With eight processors the efficiency 
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Table 111. 3D Navier-Stokes Gauss solver on the Cray YMP-8 in dedicated mode 

1 224 443 
2 227 449 
3 238 469 
4 247 490 
5 
6 
7 

869 1577 88% 
884 1635 90 ?'o 
933 1796 94% 
973 1899 96% 

2276 
1980 
2307 

~ 

Table IV. 3D Navier-Stokes Gauss solver on the NEC SX-3/44 in non-dedicated mode 

Test 1 CPU 2 CPU 3 CPU 4 CPU Speed-up 
case (M flops) (MflOPS) (MflOPS) (MflOPd 1 to 4 

1 1632 2924 3898 4389 67 Yo 

3 1984 3567 4774 5274 66 % 
2 1708 3057 4085 4577 67 % 

4 2360 4280 5674 6188 66 % 
5 2624 4733 6025 645 1 61 ?Lo 
6 1846 3323 4420 5074 69 % 
8 3119 5628 7335 9155 73 yo 

is of the order of 96%. Results indicate that the larger the problem, the better the parallel 
efficiency. The largest test cases attempted used nearly all the memory. Test case 5 has a large 
number of unknowns and a moderate bandwidth, while test case 6 has half the unknowns but 
double the bandwidth. The ratio between the two speeds also works out exactly to be 
proportional to NB', where N is the number of equations and B is the bandwidth. The fastest 
execution rate of 2.307 Gflops was obtained in test case 7, selected for its large bandwidth, which 
improves vectorization by increasing the vector length. For the largest test case, i.e. test case 7, 
the solution time on the Cray was 77 s. 

The results of Table IV are from the tests run on the NEC machine. Test case 7 was not run 
on the NEC and was replaced by test case 8. As mentioned previously, there was no provision 
for its usage in dedicated mode and therefore the comparisons of speed-up from one to four 
processors and the effect of problem size may not be accurately reflected in the table. Each 
processor of the NEC can produce 16 floating point operations per clock cycle and hence requires 
a longer vector length than the Cray to take full advantage of its capabilities. This is reflected in 
test case 8, chosen for its large bandwidth. For the largest test case, i.e. test case 8, the solution 
time on the NEC was 28 s. 

4. ITERATIVE SOLVERS 

4.1. Preconditioned conjugate-gradient-like algorithms 

Direct methods such as Gauss elimination require O(NEQ2'33) operations (where NEQ is the 
number of equations) for the factorization step and O(NEQ''67) operations for the substitution 
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step, while storage requirements are proportional to O(NEQ''67) on an N x N x N = NEQ 
mesh. Iterative methods for the Newton correction, on the other hand, can offer the advantage 
of O(NEQ) storage and, under certain conditions, preconditioned conjugate gradient methods 
can produce a machine-accurate solution in O(NEQ"") operations.'2 These estimates must, 
however, be tempered by the sensitivity of iterative methods to matrix conditioning and by the 
difficulty of vectorization for many preconditioning schemes. Some progress is being achieved in 
adapting iterative methods to the capabilities of new architecture  computer^.'^ 

The choice of iterative methods for the systems arising from the linearization of the 
Navier-Stokes equations is limited by the non-symmetry and non-positive definiteness of the 
matrix. Classical conjugate gradient methods, highly efficient for symmetric problems, become 
inapplicable. One must use variants based either on minimization of the residuals, such as the 
generalized minimum residual (GMRES) r n e t h ~ d , ' ~  or on extensions of the biconjugate gradient, 
such as the conjugate gradient squared (CGS) method." 

Experience with minimum residual methods indicates that they are not robust for non-positive 
systems, often stagnating at some non-zero value of the residual. The only cure seems to be a 
better preconditioning that makes the real part of the eigenvalues positive and redistributes them 
better. Standard conjugate gradient methods, on the other hand, are more robust for systems 
having eigenvalues with negative real part.I6 CGS therefore seems a good choice, since in 
addition it has moderate storage requirements (six vectors) compared with GMRES, for which 
it is often necessary to keep up to 20 of the previous  solution^.'^ Both approaches may necessitate 
the solution of the unsteady system, which is positive definite for small time steps. 

Preconditioning for CGS. Preconditioning is an important issue and a good preconditioner 
not only makes the difference between fast or slow convergence but between convergence and 
divergence. Here a CGS method preconditioned by incomplete factorization (PCGS) has been 
applied to the non-symmetric tangent matrix arising from the Newton linearization. Given a 
matrix [K], one computes [S] = [L][U], an approximation of the factorization of [K], and 
transforms the system 

into the preconditioned one (PCGS) 

[L]-'[K][U]-'{AZ} = - [L]- ' {R)  (9) 

( A 4  = [UI{Ax) (10) 

where 

This might be described as an equilibrated preconditioning, different from the left precondition- 
ing 

[S]-'[K](Ax} = - [ S ] - ' { R }  (1 1) 

generally employed in the implementation of the GMRES algorithm. It can be verified that (9) 
implicitly sets on the finite-dimensional spaces new scalar products associated with [L]*[L] 
and [UIT[U], which are positive definite, while a left preconditioning brings in a scalar product 
defined by [SIP', which lacks this property when used with iterative methods such as CGS. 
Indeed, a preliminary study showed that such left preconditioning for CGS yielded very poor 
convergence properties that can probably be attributed to the non-positive definiteness of the 
scalar product. 
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It should also be mentioned that an attempt to increase the accuracy of the incomplete 
factorization by permitting one level of fill-in showed no real gains for the problems tested. In 
addition, the effect of ordering, considered to be important, was investigated. For symmetric 
positive definite systems it has been shown’* that a good ordering can significantly improve the 
efficiency of the modified incomplete factorization in which discarded non-zero terms are lumped 
into the diagonal. Our preliminary experience with this method, however, was that reordering 
led to no tangible improvement for the problems under consideration. 

PCGS for Navier-Stokes: time marching and hybrid artiJicia1 viscosity. Iterative methods are 
found to converge slowly, if they converge at all, for the 3D steady incompressible and 
compressible Navier-Stokes  equation^.'^ To improve the conditioning of the matrix system, a 
time-marching procedure has been used here. The introduction of a time-dependent term in the 
equations improves the conditioning of the matrix by the addition of a mass matrix [M]/At on 
the diagonal: 

In addition, for coarse grids a streamline diffusion is added to the problem on both sides of the 
equation. This can be represented in the condensed form 

This leads to an algorithm where the iteration matrix [K] is computed with progressively 
lower values of the parameters E and part, referred to as cLHS and p t t s ,  but higher than those in 
the residual denoted by tRHS and pffs. The residual is therefore computed with the smallest 
possible values of these parameters for which the outer Newton iteration converges. This hybrid 
artificial viscosity algorithm can be described as follows. 

1. Set 

&RHS = LHS E .  RHS = LHS 
Part Part 9 

2. V and p being given, compute II RV, R, II o .  

Newton iteration 

3. Solve AVi and Api with PCGS at each Newton iteration: 

4. Update V and p: 

till IIRV,R,IJi+,/llRv,R,Ilo < lo-”; repeat from Step 3. 

m = 6 for the second and subsequent cycles). 
5. Lower eRHS and pfts and repeat from Step 2 if necessary (rn = 3 for the first cycle and 
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Table V. Convergence properties of PCGS as a function of time 
step; eRHS = cLHS = 0.05; pty = 0.025; p::' = 0.05 

Average PCGS Total 
Time Newton iterations per CPU hours 
step iterations Newton step (SGI 4D/310) 

0.5 152 10 
1 .o 75 17 
5.0 16 47 

3.14 
2.13 
1.14 

Normally two such cycles are sufficient. Numerical results are presented for the gas turbine 
pipe diffuser of Figure 10. The solutions are obtained for a Reynolds number of 1000 on a 
structured grid consisting of 25 planes in the flow direction, each with 135 nodes, leading to a 
total of 11,521 unknowns. 

Solutions have been obtained using this algorithm with various time steps. Table V shows 
the effect of the time step on the convergence properties of the Newton method and PCGS. It 
can be seen that increasing the time step from 0.5 to 5.0 reduces the number of Newton 
iterations by a factor of nearly 10, while the number of PCGS iterations per Newton step 
increases by a factor of nearly 5. The net outcome, however, demonstrates clearly that the 
highest time step for which PCGS converges will lead to the smallest computational effort. It 
must be noted that the PCGS method could not converge for the steady state equations, even 
with very high damping values of E and parr on the left-hand side. 

Figure 11 shows the effect of the time step on the PCGS convergence. The method is rapid 
and uniform for small time steps. At large time steps convergence is slower and its behaviour 
is non monotonic. 

The effect of part is shown in Table VI. The convergence rate is significantly improved with 
an artificial viscosity of 0.05. This is especially true for large time steps, where the convergence 
rate can be increased by as much as 50%. 

Figure 12 presents the storage requirements for a direct method with skyline storage compared 
with PCGS. It should be remarked, however, that the various meshes used had the same number 
of nodes per plane, which favours direct methods, since the bandwidth remains constant for all 
meshes. This explains why the storage requirement is only O(NEQ''3) rather than O(NEQ''67). 

I I I- - Atd.5 1 

I I I 

0 10 20 30 40 
Iterations 

Figure 11.  Convergence of PCGS as a function of time step 
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Table VI. Influence of pa,, and time step on convergence 
properties; cRHS = cLHS; p:? = pk:s 

PCGS PCGS 
convergence rate convergence rate 

Time 
step 

( E  = 0.05, par, = 0.00) ( E  = 0.05, par, = 0.05) 

0.5 0.335 (30*) 
1 .o 0.166 (15*) 
5.0 0.050 (1 *) 

0346 
0.201 
0.073 

10 L 

10 6 6 1  

10 Number of Equations 
10 

Figure 12. Memory requirement of PCGS and direct method as a function of number of equations (bandwidth constant) 

10 4 

A Total 
----C. PCGS 

101 I I 
10 Number of Equations 10' 

Figure 13. Solution time requirement of PCGS per Newton step as a function of number of equations 

For the largest problem tested, involving about 100,000 variables, the ratio of storage is around 
10, confirming the advantage of PCGS over direct methods in terms of memory requirements. 

Figure 13 shows that the theoretical optimal rate of O(NEQ"") for the PCG method on 
symmetric problems is also attained by the PCGS method for the non-symmetric test problems 
presented here. It also shows that the matrix integration and assembly is O(NEQ) and relatively 
important when compared with the incomplete factorization. 
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It should be mentioned finally that the parallelism offered by a four-CPU Silicon Graphics 
machine has not yet been utilized. Proper implementation of parallelism in the PCGS algorithm 
could lead to some future gains in execution time. 

4.2. Domain decomposition 

Domain decomposition encompasses a wide range of approaches. For example, the Schwarz 
decomposition has been used in its classical overlapping domain form by many, typified by 
References 20 and 21, while more recently an effort has been made in the direction of 
non-overlapping In References 22-24 the non-overlapping approach is interpreted 
as an augmented Lagrangian method. Akay and E ~ e r , ~ ’  on the other hand, alternate between 
specifying Dirichlet and Neumann conditions at the interfaces: in the first iteration the domains 
are solved with a Dirichlet boundary condition and in the following iteration the numerical 
Neumann condition is imposed, yielding the next Dirichlet condition, and so on. Dacles and 
Hafez26 present a hybrid scheme solving the fully-coupled equations on subdomains and 
communicating by solving the segregated variables on the global domain. In the following, only 
two approaches are investigated and the augmented Lagrangian methods developed in Refer- 
ences 22-24 are applied to the Navier-Stokes equations. 

Overlapping domains. The first method tested is the classical Schwarz method, with a solution 
sought on overlapping subdomains, using the latest values on the overlapping boundaries as 
boundary conditions. This method is well understood for elliptic boundary value problems and 
convergence proofs and estimates of the rate of convergence have been obtained in References 
21 and 22. Results have also been obtained for incompressible viscous flows.”*22 

In the present work the approach is applied to the incompressible flow in the gas turbine pipe 
diffuser of Figure 10 at a Reynolds number of 200. Figure 14 shows convergence results with 
the number of blocks varying from two to six and the number of planes of overlap from three 
to five. As expected, convergence depends on both parameters. The top two curves demonstrate 
that convergence is slowed down almost proportionally to the number of blocks used, for the 
same number of planes of overlap, but that the convergence rate is relatively unaffected. The 
bottom two curves demonstrate the effect of the degree of overlap: when this is increased from 
three to five on two subdomains, the convergence rate is substantially improved. 

It has not yet been attempted to compare between the solution times of the different 

10 

10 

10 

10 - z - 10 
10 

10 

10 

10 

0 

-1 - - -  2 B l ~ h . 3 P  
.a 
-3 

4 

-S 

1 

-7 

0 10 20 30 
Iterations 

Figure 14. Convergence behaviour of Schwarz overlapping domain method 
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partitioning methods. For example, a renumbering of the nodes over each subdomain can lead 
to a greatly reduced bandwidth and dramatically reduced solution times when using a direct 
solver. 

Non-overlapping or side-by-side domains. For complex geometries, the overlapping subdomain 
method introduces a difficult management of data structures and some redundant computations. 
A variant of the method was proposed by Lionsz3 and Glowinski and Le TallecZ4 for simple 
elliptic problems on non-overlapping domains. The approach is to solve on side-by-side 
subdomains Robin-type problems, with an adjustment of the fluxes at the interfaces in order to 
obtain convergence of the global problem. 

The method is applied here to the incompressible Navier-Stokes equations 

v * (V - EVP) = 0, (164 

1 1 
P Re 

v-vv = -- vp + - vzv, 

the boundary conditions being that at the inlet to the global domain 

and at the exit 

a V  
- = 0, 
an 

A weak-Galerkin weighted residual formulation 
equations 

p = 0. (17b) 

yields for the continuity and x-momentum 

N f  2 J [ ( E P ,  - u)W, + (&py - u)W,  + (EP, - w)K] d Q  - Wds = 0, (18a) 
i = l  ni 

5 lni [Re WV - Vu + (u, - Rep)W, + (uy - Rep)W, + (u, - Rep)W,] dni 
i =  1 

- Jm[2 - Repn) W ds = 0, 

N being the number of non-overlapping subdomains. The above equations are then solved on 
each subdomain with the following boundary conditions at nodes on the interfaces: 

a V / h  - Repn + rVV = ,Iv + rVVadj, (19b) 

where r is a relaxation or penalty and ( A p ,  A,) are Lagrange multipliers for the continuity and 
momentum equations respectively. 
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Introducing (19) into the Galerkin formulation, one has for the continuity equation, 

+ j [(A, + rppad j  - r p p )  + V.n]W ds = 0 

and for the x-momentum equation 

f‘ In, [ReWV*Vu + (u, - Rep)W, + (uy - Rep)W, + (u, - Rep)@] dQi 
i =  1 

- la*, (A, + r,uadj - r,u)W ds = 0, (20b) 

Therefore for each block one would be solving the following set of equations for continuity and 
x-momentum : 

LHS - la*, r,pW ds = RHS - (A, + rppadj)W ds, la*. 
LHS + l*, I.. 

(21a) 

r,uW ds = RHS - (A, + r,uadj)W ds, (21b) 

where LHS and RHS correspond to those of the original equations on each subdomain before 
domain decomposition. 

The initial values of (A,, A,) can be taken as 

A, = - Eap/an, (224 

(22b) 

(234 

(23b) 

Av = N / a n  - Repn 

and are updated as follows: 
n t l  = n 

A p  A p  + r p ( P a d j  - P)”, 

A; + r,(Vadj - V)n. A n + l  = v 

0 5 10 15 20 25 30 
Iterations 

figure 15. Augmented Lagrangian method for domain decomposition 
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Results for the Navier-Stokes equations have been obtained for the gas turbine pipe diffuser 
of Figure 10. Convergence depends, as expected, on the Reynolds number as shown in Figure 
15 and this requires a good choice of the relaxation parameter r. Values of rp  = 1 and rv zz Re 
have proven to be a reasonably successful choice for the Reynolds numbers tested here. 

These results demonstrate the potential of the method. Its robustness and convergence rates 
could be improved by using PCGS as a preconditioner for a minimum residual algorithm applied 
to the fully-coupled update of the Lagrange multipliers to minimize the jumps at the domain 
interfaces. 

5. CONCLUSIONS 

It can be concluded that advanced supercomputers such as the Cray YMP or NEC SX-3 make 
the use of large-scale direct solvers for the solution of CFD problems possible today. In this 
respect it has been demonstrated that direct solution of the coupled sets of equations resulting 
from the Euler and Navier-Stokes analysis of fluid problems is practical and that Gaussian 
elimination procedures vectorize and parallelize well on such computers. Execution rates of over 
2.3 Gflops can be attained and work is continuing on an out-of-core version of the method to 
handle even larger CFD problems. 

On the other hand, the performance of sparse matrix algorithms seems somewhat reduced 
for three-dimensional problems in which the grid is more dense in one direction. The develop- 
ment of algorithms such as the LND partially improves such technology, but not yet to the 
point of making it competitive with other techniques. Further work is needed in three dimensions 
to demonstrate the appropriateness of an LND sparse matrix technology. 

The present application of preconditioned iterative methods such as PCGS to the solution of 
linearized problems associated with the incompressible and compressible Navier-Stokes equa- 
tions is quite successful. The introduction of time-dependent terms in the equations improves 
the matrix conditioning. When this is coupled with a hybrid artificial viscosity method, i.e. higher 
in the iteration matrix than in the physical matrix, a robust scheme is obtained. 

Overlapping domain methodology has been investigated and an interesting side-by-side 
technique has been introduced which, although not yet fully verified for high-Reynolds-number 
problems, seems promising enough for the breakdown of large problems into subdomains 
manageable by either direct or iterative solvers. An implicit method for solving for the Lagrange 
multipliers at each global field update should considerably improve the speed of the method. 

Undoubtedly, the continuing evolution of hardware will make it possible to take increasing 
advantage of the properties of fully-coupled strategies for fluid dynamics problems. It is also 
evident that none of the above four methods can single-handedly provide the solution for large 
problems, but that combinations of them seem promising enough. 
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APPENDIX; NOMENCLATURE 

element index 
total number of elements 
element influence matrix 
global influence matrix 
lower/upper triangular components of [K] 
energy norm for residual = C(R?) 
global mass matrix 
normal to interface between subdomains 
outward normal to a domain 
total number of subdomains 
pressure 
relaxation factor 
residual vector at nodes, residual norm 
Reynolds number 
time 
global preconditioning matrix 
velocity components 
velocity vector 
Galerkin weight function 

Greek letters 

A change in a variable 
E pressure dissipation parameter 
A Lagrange multiplier 
P viscosity 
P density 
ni, dQi volume, surface area of a subdomain i 

Subscripts 

adj 
art 
i, j 
P 
u 
U 
V 

x, Y ,  
W 

values from interface of adjacent block 
artificial viscosity 
nodal indices 
related to continuity equation 
related to x-momentum equation 
related to y-momentum equation 
pertaining to momentum equations 
related to z-momentum equation 
differentiation with respect to x, y, z 

Superscripts 

LHS left-hand-side 
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n iteration number 
P contribution to pressure term 
RHS right-hand side 

1105 

U 
U 
W 

1. 
2. 
3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11.  

12. 
13. 

14. 

15. 

16. 
17. 

18. 

19. 

20. 

21. 

22. 

23. 

contribution to u-velocity term 
contribution to u-velocity term 
contribution to w-velocity term 
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